


# **CIPARALL®**







Appui glissant Elastomère Frettage transversal et surface de glissement rigide, Charge jusqu'à 15 N/mm<sup>2</sup>

## Description

#### **Index**

|                             | Page |
|-----------------------------|------|
| Description                 | 2    |
| Formules de calcul          | 3    |
| Tableau de calcul 1         | 4    |
| Tableau de calcul 2         | 5    |
| Distances aux bords         | 6    |
| Exemple de calcul           | 7    |
| Tassement                   | 8    |
| Conditionnement, dimensions | 8    |
| Références                  | 9    |
| Installation verticale      | 9    |
| Principe d'installation     | 10   |
| Formulaire descriptif       | 10   |
| Coefficients de frottement  | 11   |
| Certificats et tests        | 12   |
| In-situ / préfabrication    | 12   |
|                             |      |

**Description du produit** 

Calenberg Ciparall® exercent de façon indépendante les fonctions de glissement et de déformation. Selon les conditions requises, différentes épaisseurs peuvent être choisies.

L'appui est constitué de :

- Une combinaison de couches de caoutchouc vulcanisé et de plaques d'acier de frettage et d'une plaque de base à faible friction en PTFE permettant le mouvement relatif des 2 composants.
- Une plaque synthétique renforcée de fibres de verre (GFK)

Le matériau de frettage définit le type d'appui

- Ciparall® GFK avec frette composite fibre de verre
- Ciparall® ST avec frette en acier

Les appuis sont désignés complémentairement selon leur utilisation en préfabrication: appellation "BnF" ou en coulage in-situ: appellation «OBn»

Dans ce dernier cas, les appuis sont encastrés dans du polystyrène pour éviter toute infiltration parasite de laitance de béton venant bloquer le fonctionnement.

Si, de plus, une résistance au feu doit être assurée, selon les classes "F 90" ou "F 120", les appuis sont encastrés dans du Ciflamon (voir page 12). Ceci s'applique aux types BnF et OBn.

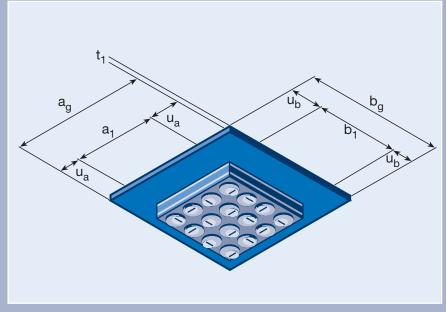



Figure 1. Désignation des dimensions individuelles des appuis CIPARALL®



| Type d'appui                                          | Ciparall® GFK                                                                    | Ciparall® ST |                                              |  |  |  |
|-------------------------------------------------------|----------------------------------------------------------------------------------|--------------|----------------------------------------------|--|--|--|
| épaisseur totale t                                    | 14 mm                                                                            | 11 mm        | (20, 30, 40) mm                              |  |  |  |
| Ep. Plaque glissement t <sub>1</sub>                  | 2,6 mm                                                                           | 2,6 mm       | 4,8 mm                                       |  |  |  |
| Contrainte de compression admissible σ <sub>adm</sub> | 1,2 (18,8 – 0,0002 · a <sub>1</sub> · b <sub>1</sub> )<br>≤ 15 N/mm <sup>2</sup> | 15 N/mm² *   |                                              |  |  |  |
| Angle de rotatin                                      |                                                                                  | t [mm]       | α <sub>allow</sub> [‰]                       |  |  |  |
| admiss. $\alpha_{\text{adm}}$                         |                                                                                  | 11 mm        | $\frac{1000}{a_1 \text{ ou } b_1} \le 40 \%$ |  |  |  |
| M                                                     | $\frac{1000}{a_1 \text{ ou } b_1} \le 40 \%$                                     | 20 mm        | $\frac{2000}{a_1 \text{ ou } b_1} \le 40 \%$ |  |  |  |
| αι                                                    |                                                                                  | 30 mm        | $\frac{3500}{a_1 \text{ ou } b_1} \le 40 \%$ |  |  |  |
| ∫a₁ ou b₁∫                                            |                                                                                  | 40 mm        | $\frac{5000}{a_1 \text{ ou } b_1} \le 40 \%$ |  |  |  |

Les avantages des appuis Ciparall® sont:

- Faibles coefficients de friction permettant des déplacements quasiment sans limite des éléments constructifs
- Les rotations et imperfections sont absorbées par la couche élastique et ne sont pas transmises à la plaque de base.
- Ciparall® permet la transmission des charges sans dommage puisque les forces sont recentrées.

Les forces transversales, imperfections de planéité de surface, déformations parasites ne sont pas transmises à la plaque de base; La plaque reste à niveau et parallèle. Les facultés de glissement sont inchangées ce qui est un facteur de sécurité de fonctionnement.

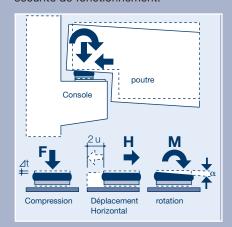



Figure 2. Fonctions des appuis Ciparall®

\* σ<sub>adm</sub> dépend de la taille voir table 1

### Formules de calcul

## Table de dimensionnement 1

| Ciparall® GFK; épaisseur t = 14 mm |                        |    |      |        |        |         |       |            |                    |                   |                   |      |      |      |     |      |      |      |      |
|------------------------------------|------------------------|----|------|--------|--------|---------|-------|------------|--------------------|-------------------|-------------------|------|------|------|-----|------|------|------|------|
| Angle de rotation                  | Côtés<br>appui<br>[mm] |    | C    | ontrai | nte ve | ertical | e adn | nissibl    | e σ <sub>adı</sub> | <sub>n</sub> [N/n | nm <sup>2</sup> ] |      | C    | 1    | F   |      |      |      |      |
| α <sub>adm</sub> [‰]               | $a_1$ $b_1$            | 50 | 60   | 70     | 80     | 90      | 100   | 110        | 120                | 130               | 140               | 150  | 160  | 170  | 180 | 190  | 200  | 250  | 300  |
| 20,0                               | 50                     |    |      |        |        |         |       |            |                    |                   |                   |      |      |      |     |      |      |      |      |
| 16,7                               | 60                     |    |      |        |        |         |       |            |                    |                   |                   |      |      |      |     |      |      |      |      |
| 14,3                               | 70                     |    |      |        |        |         |       |            |                    |                   |                   |      |      |      |     |      |      |      |      |
| 12,5                               | 80                     |    |      |        |        |         |       |            |                    |                   |                   |      |      |      |     |      |      |      |      |
| 11,1                               | 90                     |    |      |        |        |         |       |            |                    |                   |                   |      |      |      |     |      |      |      |      |
| 10,0                               | 100                    |    |      |        |        |         | 44    | <b>5 0</b> |                    |                   |                   |      |      |      |     |      |      |      |      |
| 9,1                                | 110                    |    |      |        |        |         | I     | 5,0        |                    |                   |                   |      |      |      |     |      |      |      | 14,6 |
| 8,3                                | 120                    |    |      |        |        |         |       |            |                    |                   |                   |      |      |      |     |      |      |      | 13,9 |
| 7,7                                | 130                    |    |      |        |        |         |       |            |                    |                   |                   |      |      |      |     |      |      | 14,8 | 13,2 |
| 7,1                                | 140                    |    |      |        |        |         |       |            |                    |                   |                   |      |      |      |     |      |      | 14,2 | 12,5 |
| 6,7                                | 150                    |    |      |        |        |         |       |            |                    |                   |                   |      |      |      |     | ,    |      | 13,6 | 11,8 |
| 6,3                                | 160                    |    |      |        |        |         |       |            |                    |                   |                   |      |      |      |     |      |      | 13,0 |      |
| 5,9                                | 170                    |    |      |        |        |         |       |            |                    |                   |                   |      |      |      |     |      | 14,4 |      | 10,3 |
| 5,6                                | 180                    |    |      |        |        |         |       |            |                    |                   |                   |      |      |      |     | 14,4 |      |      | 9,6  |
| 5,3                                | 190                    |    |      |        |        |         |       |            |                    |                   |                   |      |      |      |     | 13,9 |      |      | 8,9  |
| 5,0                                | 200                    |    |      |        |        |         |       |            |                    |                   |                   |      | 14,9 |      |     | 13,4 |      |      | 8,2  |
| 4,0                                | 250                    |    |      |        |        |         |       |            |                    | 14,8              |                   |      |      | 12,4 |     |      | 10,6 | 7,6  | 4,6  |
| 3,3                                | 300                    |    |      |        |        |         |       | 14,6       |                    | 13,2              |                   |      | 11,0 |      | 9,6 | 8,9  | 8,2  | 4,6  | 1,0  |
| 2,9                                | 350                    |    |      |        |        | 10.5    |       | 13,3       |                    | 11,6              |                   | 10,0 | 9,1  | 8,3  | 7,4 | 6,6  | 5,8  | 1,6  |      |
| 2,5                                | 400                    |    |      |        | 14,9   |         |       | 12,0       |                    |                   | 9,1               | 8,2  | 7,2  | 6,2  | 5,3 | 4,3  | 3,4  |      |      |
| 2,2                                | 450                    |    | -    |        | 13,9   |         | 11,8  | 10,7       | 9,6                | 8,5               | 7,4               | 6,4  | 5,3  | 4,2  | 3,1 | 2,0  | 1,0  |      |      |
| 2,0                                | 500                    | -  | 116  |        | 13,0   |         | 10,6  | 9,4        | 8,2                | 7,0               | 5,8               | 4,6  | 3,4  | 2,2  | 1,0 |      |      | 0    |      |
| 1,8                                | 550                    | _  |      | 13,3   |        |         | 9,4   | 8,0        | 6,7                | 5,4               | 4,1               | 2,8  | 1,4  |      |     |      |      | 0,0  | J    |
| 1,7                                | 600                    |    | 13,9 | 12,5   | 11,0   | 9,6     | 8,2   | 6,2        | 5,3                | 3,8               | 2,4               | 1,0  |      |      |     |      |      |      |      |



| Арј                                    | oui C  | iparall®                    | ST; épa                 | isseur 1                    | t = 11, 2               | 20, 30 et                   | 40 mm             |                             |                   |
|----------------------------------------|--------|-----------------------------|-------------------------|-----------------------------|-------------------------|-----------------------------|-------------------|-----------------------------|-------------------|
| t <sub>1</sub>                         |        |                             |                         |                             |                         |                             |                   |                             |                   |
| Epaisseur totale t [mm]                |        | 11                          |                         | 2                           |                         | 30                          |                   | 40                          |                   |
| Largeur appui a <sub>1</sub> [mm]      |        | σ <sub>adm</sub><br>[N/mm²] | <sup>α</sup> adm<br>[‰] | σ <sub>adm</sub><br>[N/mm²] | <sup>α</sup> adm<br>[‰] | σ <sub>adm</sub><br>[N/mm²] | $^{lpha}$ adm [‰] | σ <sub>adm</sub><br>[N/mm²] | $^{lpha}$ adm [‰] |
|                                        | 50     | 15,0                        | 20,0                    | 7,5                         | 40,0                    |                             |                   |                             |                   |
|                                        | 60     | 15,0                        | 16,7                    | 9,0                         | 33,3                    |                             |                   |                             |                   |
|                                        | 70     | 15,0                        | 14,3                    | 10,5                        | 28,6                    |                             |                   |                             |                   |
|                                        | 80     | 15,0                        | 12,5                    | 12,0                        | 25,0                    | 12,0                        | 40,0              |                             |                   |
|                                        | 90     | 15,0                        | 11,1                    | 13,5                        | 22,2                    | 13,5                        | 38,9              |                             |                   |
|                                        | 100    | 15,0                        | 10,0                    | 15,0                        | 20,0                    | 15,0                        | 35,0              | 15,0                        | 40,0              |
|                                        | 110    | 15,0                        | 9,1                     | 15,0                        | 18,2                    | 15,0                        | 31,8              | 15,0                        | 40,0              |
|                                        | 120    | 15,0                        | 8,3                     | 15,0                        | 16,7                    | 15,0                        | 29,2              | 15,0                        | 40,0              |
|                                        | 130    | 15,0                        | 7,7                     | 15,0                        | 15,4                    | 15,0                        | 26,9              | 15,0                        | 38,5              |
| F <b>↓</b>                             | 150    | 15,0<br>15,0                | 7,1<br>6,7              | 15,0<br>15,0                | 14,3<br>13,3            | 15,0<br>15,0                | 25,0<br>23,3      | 15,0<br>15,0                | 35,7<br>33,3      |
|                                        | 160    | 15,0                        | 6,3                     | 15,0                        | 12,5                    | 15,0                        | 21,9              | 15,0                        | 31,3              |
|                                        | 170    | 15,0                        | 5,9                     | 15,0                        | 11,8                    | 15,0                        | 20,6              | 15,0                        | 29,4              |
| <u>a</u> 1                             | 180    | 15,0                        | 5,6                     | 15,0                        | 11,1                    | 15,0                        | 19,4              | 15,0                        | 27,8              |
|                                        | 190    | 15,0                        | 5,3                     | 15,0                        | 10,5                    | 15,0                        | 18,4              | 15,0                        | 26,3              |
|                                        | 200    | 15,0                        | 5,0                     | 15,0                        | 10,0                    | 15,0                        | 17,5              | 15,0                        | 25,0              |
|                                        | 250    | 15,0                        | 4,0                     | 15,0                        | 8,0                     | 15,0                        | 14,0              | 15,0                        | 20,0              |
|                                        | 300    | 15,0                        | 3,3                     | 15,0                        | 6,7                     | 15,0                        | 11,7              | 15,0                        | 16,7              |
|                                        | 350    | 15,0                        | 2,9                     | 15,0                        | 5,7                     | 15,0                        | 10,0              | 15,0                        | 14,3              |
|                                        | 400    | 15,0                        | 2,5                     | 15,0                        | 5,0                     | 15,0                        | 8,8               | 15,0                        | 12,5              |
|                                        | 450    | 15,0                        | 2,2                     | 15,0                        | 4,4                     | 15,0                        | 7,8               | 15,0                        | 11,1              |
|                                        | 500    | 15,0                        | 2,0                     | 15,0                        | 4,0                     | 15,0                        | 7,0               | 15,0                        | 10,0              |
|                                        | 550    | 15,0                        | 1,8                     | 15,0                        | 3,6                     | 15,0                        | 6,4               | 15,0                        | 9,1               |
|                                        | 600    | 15,0                        | 1,7                     | 15,0                        | 3,3                     | 15,0                        | 5,8               | 15,0                        | 8,3               |
| Note: Largeur appui a <sub>1</sub> ≤ l | longue | ur appui b <sub>1</sub>     |                         |                             |                         |                             |                   |                             |                   |

## Table de dimensionnement 2

### Distances aux bords

#### Construction En béton armé

La distance aux éléments en béton armé doit être strictement respectée lorsqu'on emploie des appuis élastomère pour éviter la fissuration

Dans son Bulletin 525, le «Deutscher Ausschuss für Stahlbetonbau» (DAfStb) spécifie les critères pour les distances aux bords sur la base DIN 1045 - Tragwerke aus Beton, Stahlbeton und Spannbeton - Part 1: Bemessung und Konstruktion. Se reporter à la Figure 3 pour la notation des distances

- а Largeur sans joint
- Largeur appui
- Distance entre appui et bord du support
- $\Delta a_2$  Tolérance dimensionnelle entre éléments de support
- Distance entre l'appui et les bords  $a_3$ extérieurs des éléments supportés
- Δa<sub>3</sub> Tolérance dimensionnelle sur la longueur des éléments supportés
- Longueur de l'appui b<sub>1</sub>
- u<sub>a,b</sub> distance de glissement vers a ou b

Les dimensions minimales dépendent de la qualité du béton support, du type de support, du type d'appui et du matériau; voir les tables du Bulletin 525, page 119 susmentionné.

#### Construction métallique

En cas d'éléments de structure en acier. la distance aux bords est au moins du double de l'épaisseur de l'appui.

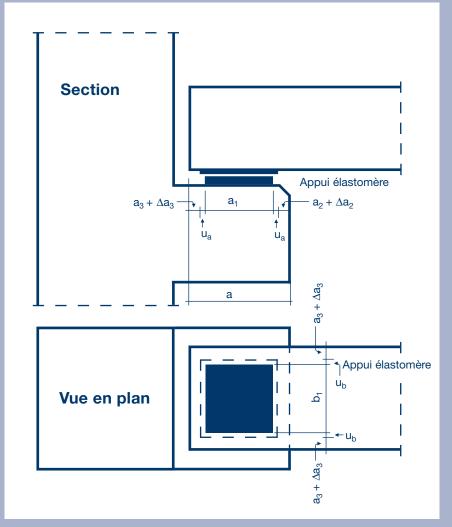



Figure 3. Distances aux bords



Exemple de détermination selon DIN 1045 - Structures béton, armé et précontraint: Part 1 - Calcul et construction -**Bulletin 525** - Commentaire à DIN 1045 (DAfStb)

| Données système:                      |                          |  |  |  |  |  |
|---------------------------------------|--------------------------|--|--|--|--|--|
| Poutre prefa simple travée            |                          |  |  |  |  |  |
| supportée par un corbeau              | à                        |  |  |  |  |  |
| frettage vertical                     |                          |  |  |  |  |  |
| Caractéristiques d                    | lu béton                 |  |  |  |  |  |
| classe                                | C 30/37                  |  |  |  |  |  |
| Enrobage des aciers c <sub>nom</sub>  | 25 mm                    |  |  |  |  |  |
| Ø des aciers                          | 8 mm                     |  |  |  |  |  |
| Coeff. de sécurité béton $\gamma_{c}$ | 1,5                      |  |  |  |  |  |
| Résistance caractéristique            |                          |  |  |  |  |  |
| du cylindre f <sub>ck</sub>           | 30 N/mm <sup>2</sup>     |  |  |  |  |  |
| Valeur des forces                     |                          |  |  |  |  |  |
| non axées f <sub>cd</sub>             | 17 N/mm <sup>2</sup>     |  |  |  |  |  |
| Résistance calculée                   |                          |  |  |  |  |  |
| du support f <sub>Rd</sub>            | 14,45 N/mm <sup>2</sup>  |  |  |  |  |  |
| Poids spécifique du béton:            | 25 kN/m <sup>3</sup>     |  |  |  |  |  |
| Module d'élasticité du béton          | 30.000 N/mm <sup>2</sup> |  |  |  |  |  |
| Dimensions de la poutre               |                          |  |  |  |  |  |
| Longueur de la poutre:                | 15 m                     |  |  |  |  |  |
| Largeur de la poutre:                 | 0,3 m                    |  |  |  |  |  |
| Hauteur de la poutre:                 | 0,6 m                    |  |  |  |  |  |
| Espacement des poutres:               | 5 m                      |  |  |  |  |  |

| 1) Voir | aussi | Figure | 6 on | page | 10 |
|---------|-------|--------|------|------|----|
|---------|-------|--------|------|------|----|

| Charges, forces et                         | flèche                |  |  |  |  |
|--------------------------------------------|-----------------------|--|--|--|--|
| Charges permanente g:                      | 4,5 kN/m              |  |  |  |  |
| Charges d'exploitation théorique:          | 3 kN/m²               |  |  |  |  |
| Charges d'exploitation réelle p:           | 15 kN/m               |  |  |  |  |
| Charge maxi q:                             | 19,5 kN/m             |  |  |  |  |
| Coeff. de sécurité $\gamma_G$ :            | 1,5                   |  |  |  |  |
| Réaction du support F <sub>Ed</sub> :      | 219 kN                |  |  |  |  |
| Moment d'inertie                           | 0,0054 m <sup>4</sup> |  |  |  |  |
| Flèche:                                    | 7,9 cm                |  |  |  |  |
| Déplacement horizontal ua:                 | +- 8 mm               |  |  |  |  |
| Distances aux bo                           | ords                  |  |  |  |  |
| $\sigma_{Ed}/f_{cd} = 0.71 \ge$            | 0,4                   |  |  |  |  |
| $a_2$                                      | 25 mm                 |  |  |  |  |
| $\Delta a_2$                               | 13 mm                 |  |  |  |  |
| $a_3$                                      | 57 mm                 |  |  |  |  |
| $\Delta a_3$                               | 6 mm                  |  |  |  |  |
| 2 u <sub>a</sub>                           | 16 mm                 |  |  |  |  |
| Sélection d'appui et di                    | mensions              |  |  |  |  |
| Type d'appui:                              | Ciparall®             |  |  |  |  |
| Longueur appui élastomère b <sub>1</sub> : | 160 mm                |  |  |  |  |
| Largeur appui élastomère a <sub>1</sub> :  | 140 mm                |  |  |  |  |
| Longueur plaque glissante bg               | 170 mm <sup>2)</sup>  |  |  |  |  |
| Largeur plaque glissante ag                | 160 mm                |  |  |  |  |
| Epaisseur appui hors tout t:               | 40 mm                 |  |  |  |  |
| Dimensions du corbeau                      |                       |  |  |  |  |
| Largeur mini du support a:                 | 257 mm                |  |  |  |  |
| Largeur arrondie a:                        | 260 mm                |  |  |  |  |
| Largeur support a:                         | 300 mm                |  |  |  |  |

<sup>2) 160</sup> mm serait suffisant mais due aux imperfections une marge de sécurité de 10 mm est retenue

| Détermination de l'appui                                           |                                                                         |  |  |  |  |  |  |
|--------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                                    | Contrainte de compression                                               |  |  |  |  |  |  |
| σ <sub>exist</sub> =                                               | $\sigma_{Ed} = 9.8 \text{ N/mm}^2 \le \sigma_{adm} = 15 \text{ N/mm}^2$ |  |  |  |  |  |  |
|                                                                    | Déplacement horizontal                                                  |  |  |  |  |  |  |
| $u_{a,exist} = \pm 8 \text{ mm} \le u_{a,adm} = \pm 10 \text{ mm}$ |                                                                         |  |  |  |  |  |  |
|                                                                    | Rotation angulaire                                                      |  |  |  |  |  |  |
| $\alpha_{\text{exist}}$                                            | = 21,3 ‰                                                                |  |  |  |  |  |  |
| $\alpha_{\text{imp}}$                                              | = 10,0 % <sup>3)</sup>                                                  |  |  |  |  |  |  |
| $\alpha_{\text{total}}$                                            | $= 31,3 \% \le \alpha_{adm} = 35,7 \%$                                  |  |  |  |  |  |  |

<sup>3)</sup> Une marge de sécurité de 10 ‰ est toujours appliquée pour tenir compte de variations de fabrication et des aléas de pose.

## Exemple de détermination

### **Tassement**

#### Formes et dimensions

Les appuis glissants Ciparall® sont Fabriqués et livrés pour chaque application particulière.

Les appuis peuvent être fournis avec des Trous, trous oblongs, biseaux etc. pour des tiges ou boulons puissent les traverser.

- Ciparall® GFK t = 14 mm
- Ciparall® ST t = 11, 20, 30, 40 mm

#### **Application pour la construction** préfabriquée (BnF):

- Ciparall® GFK, BnF  $b_1/b_q \cdot a_1/a_q \cdot t$
- Ciparall® ST, BnF  $b_1/b_q \cdot a_1/a_q \cdot t$

#### Application pour la construction in situ (OBn):

Pour le coulage in-situ (OBn) l'appui est fourni avec une protection

longueur et largeur ou b₁ et a₁:

de l'appui.

b<sub>g</sub> et a<sub>g</sub>: Longueur et largeur

de plaque de glissement

épaisseur totale

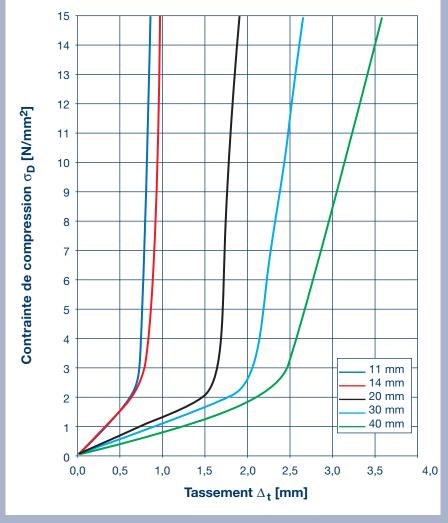



Figure 4. CIPARALL® tassement (approx.) pour une taille de 150 mm x 150 mm



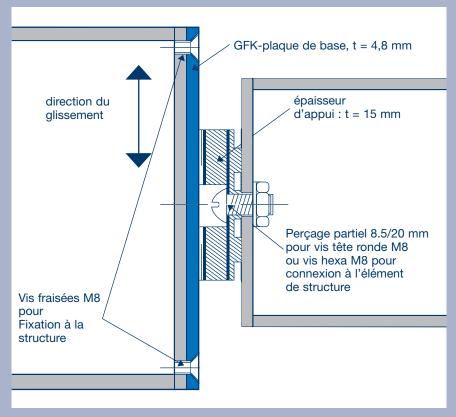



Figure 5. Exemple d'installation de Ciparall® ST, t = 20 mm, en jonction verticale joint entre deux éléments de structure acier avec connexion des composants de l'appui sur la structure.

#### Références (extrait)

#### **Ecoles, Universités, Centres sportifs**

- Université des Sciences, Bochum
- Institut Electrotechnique, Université Technique Berlin
- Département Médical, Göttingen
- Kölnarena, Cologne
- Stade Olympique, Berlin
- Westphalia Stadium, Dortmund
- Central Stadium, Leipzig

#### **Industrie, Administration, Services**

- City Gallery, Augsburg
- Nouvelle mairie, Göttingen
- Federal Printing Office, Berlin
- Tour Pegel, Goitzsche
- Chancellerie Fédérale, Berlin
- Siège social MDR, Leipzig
- Parking Aéroport, Leipzig
- Infineon, Dresden
- Parc d'expositions Hanovre
- Parc d'expositions Francfort
- Sources thermales, Templin
- Ostseehalle, Kiel
- Aéroport Hambourg, Terminal 2/3
- Warnow Park, Rostock

- Halls d'exposition NCO, Riyadh,
- Autoroute Kinali-Sakarya 2. ponts sur le Bosphore
- IKEA, Varsovie
- Brasserie, Poznan, Pologne
- Parlement Ecossais, Edinbourg,
- Main-Bowl-Stadium, Lagos, Nigeria

### Installation Verticale

## Formulaires descriptifs

#### Calenberg Ciparall® GFK pour BnF ou OBn

Equipé de frette transversale et d'une plaque glissante rigide Plot à élasticité permanente; capacité de charge jusqu'à 15 N/mm<sup>2</sup> selon la taille.

Certification Official No.P-852.0290-4

Dimensions:  $b_1/b_g \cdot a_1/a_g \cdot t$ 

.... pièces Quantité

Prix ..... €/pièce

#### Calenberg Ciparall® ST pour BnF ou OBn

Equipé de frette transversale et d'une plaque glissante rigide Plot à élasticité permanente; capacité de charge jusqu'à 15 N/mm2 selon la taille.

Certification Official No. P-852.0290-4

Dimensions:  $b_1/b_g \cdot a_1/a_g \cdot t$ 

Quantité .... pièces

Prix ..... €/pièce

Fournisseur:

Calenberg Ingenieure GmbH

Am Knübel 2-4

D-31020 Salzhemmendorf Tél. +49 (0) 51 53/94 00-0 Fax +49 (0) 51 53/94 00-49



Figure 6. Principe d'installation, les distances aux bords doivent être respectées (voir page 6)



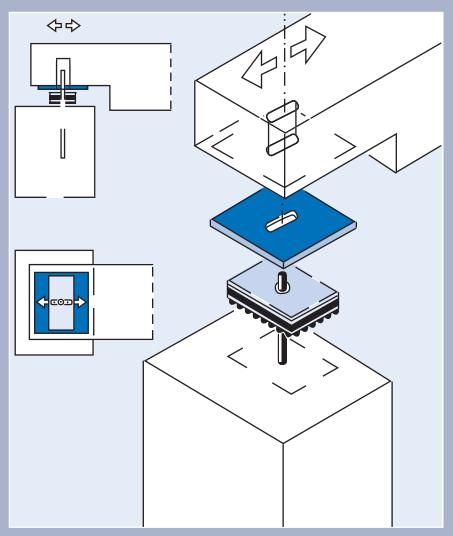





Figure 8. Valeurs de friction en fonction du nombre de cycles séparés par un repos.

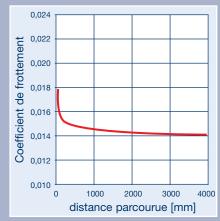



Figure 9: Valeurs de friction en fonction de cumul de distances parcourues lors des glissements séparées par un repos.

Figure 7. Installation de Ciparall® avec perçages, boulons et trous oblongs

### Coefficient de frottement



### Certificats

- Autorité Générale de la construction certificat de test no. P-852.0290-4; recherche de base pour classification des appuis glissants Ciparall® selon DIN 4141, part 3, laboratoire officiel pour le test des matériaux et plastiques, Université Technique de Hanovre, 2003
- Certification sécurité feu no. 3799/7357-AR; accréditement des appuis élastomère Calenberg selon classification à la résistance au feu classe F 90 ou F 120 selon DIN 4102 part 2 (ed. 9/1977); laboratoire officiel de l'Institut des matériaux de Construction, béton armé et protection au feu, Université Technique, Braunschweig; Mars 2005

#### **Protection feu**

La classification «Brandschutztechnische Beurteilung Nr. 3799/7357-AR-, TU Braunschweig» donne des mesures pour toutes les applications des appuis dont lesquelles une exigence à coupe feu est à respecter. En tenir compte les mesures écrites dans ce document, les règles de la DIN 4102-2 «Brandverhalten von Baustoffen und Bauteilen, 1977-09» sont accomplies.

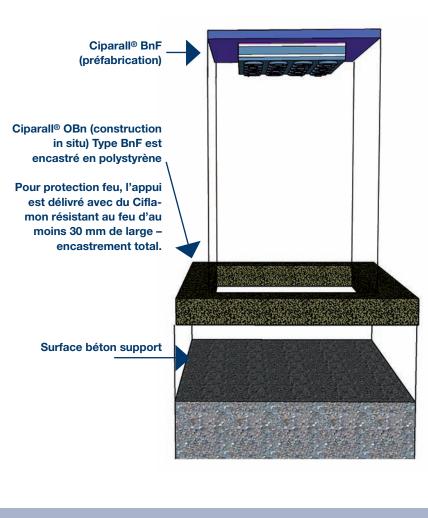



Figure 10. Principe d'installation CIPARALL® type BnF ou OBn sur un poteau

Partenaire commercial

### **SOCECO RECKLI**

40, rue Lauriston F-75116 Paris Tél. +33/1/47274918 Fax:+33/1/47273584 info@soceco-reckli.com www.soceco-reckli.com

Coordonnées d'entreprise:

Calenberg Ingenieure GmbH

Am Knübel 2-4

D-31020 Salzhemmendorf

Tél. +49 (0) 5153/94 00-0

Fax +49 (0) 5153/94 00-49

info@calenberg-ingenieure.de

http://www.calenberg-ingenieure.de

Le contenu de cette brochure est le résultat d'importants travaux de recherche et d'expériences d'application technique. Toutes les indications et instructions ont été fournies en connaissance de cause; elles ne sont pas une garantie des propriétés indiquées et ne libèrent pas l'utilisateur de son obligation de vérification, en particulier en ce qui concerne les droits de propriété industrielle de tiers. Toute demande de dommages et intérêts, de quelque nature que ce soit et pour quelque motif juridique que ce soit, en vertu des conseils fournis dans cette brochure est exclue. Sous réserve de développements techniques ultérieurs dus à de nouveaux résultats de recherche.

