

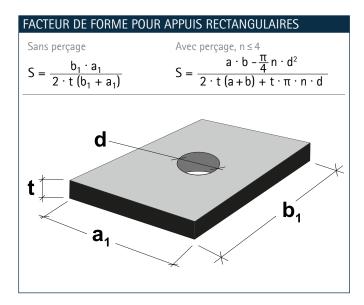
Appui statique en élastomère destiné à l'isolation d'éléments de construction

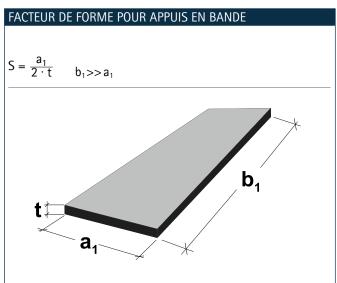
Dimensionnement avec valeurs nominales

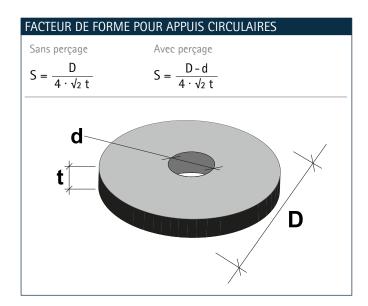
Le dimensionnement des appuis est effectué selon l'agrément technique général jusqu'à une contrainte de compression $\sigma_{R,d} = 14 \text{ N/mm}^2$. Le concept de dimensionnement repose sur le facteur de forme. Les perçages, les découpes et les distances latérales requises sont à prendre en compte conformément à la norme DIN EN 1992.

TYPE DE SOLLICITATION valeur assignée de la déformation en mise en compression angle de torsion adm. Forces de traction latérale capacité portante cisaillement adm. des appuis **FORMULE** $\sigma_{R,d} = 4.03 \cdot S^{1.16} \le 14 [N/mm^2] \mid u \text{ adm.} = 0.6 \cdot (t-2) [mm]$ $Z_{a,d} = 1.5 \cdot F_d \cdot t/b_1[kN]$ (sur le côté large de l'appui) (appui rectangulaire) À prendre en compte après Force horizontale $Z_{b,d} = 1.5 \cdot F_d \cdot t/a_1[kN]$ Facteur de forme S, voir page 7 l'agrément : $H_d = c_{s(t)} \cdot u \cdot A_E / 20000 \text{ [kN]}$ (sur le côté longitudinal de voir page 2 • 10 ‰ résultant de l'inclil'appui) naison oblique Afin d'éviter un glissement de l'appui, une contrainte • $\frac{625}{a_1}$ résultant d'une de compression minimale de irrégularité 1 N/mm² est requise. Valeurs c_{s(t)} et conditions marginales, voir aussi cahier 339, DAfStb voir aussi cahier 600, DAfStb voir page 9

LÉGENDE DES SYMBOLES DES FORMULES


⊢ _d H _d	Force horizontale	σ _{R,d}	Valeur assignée de la capacité portante Contrainte de compression nominale résultant
Z _{a,d} , Z _{b,d} A _E	Force de traction latérale Surface de l'appui	σ _{E,d}	de l'influence
S	Facteur de forme, rapport entre la surface de l'appui comprimée A _E et la surface de l'enveloppe non sollicitée	C _{s(t)}	Torsion de l'appui Rigidité au cisaillement Déformation en cisaillement de l'appui
a ₁ b ₁	Côté le plus court de l'appui Côté le plus long de l'appui Largeur de l'élément de construction	γ t Δt	Angle de poussée Épaisseur de l'appui Mise en compression des appuis
a h	Longueur de l'élément de construction		




Appui statique en élastomère destiné à l'isolation d'éléments de construction

Calcul du facteur de forme

Pour le dimensionnement des appuis en élastomère non armés, on emploie le facteur de forme S comme rapport entre la surface comprimée et la surface librement déformable. Le facteur de forme S permet de calculer la contrainte de compression admissible en fonction des dimensions de l'appui.

Appui statique en élastomère destiné à l'isolation d'éléments de construction

Épaisseurs : 10 et 15 mm

Les tableaux suivants indiquent la valeur assignée de la capacité portante et l'angle de torsion admissible en fonction des dimensions de l'appui. Les valeurs intermédiaires peuvent être interpolées.

APPUI																					
[mm]	α[‰]	[mm]	VALEU	JR ASS	IGNÉE	DE LA	CAPAC	ITÉ POF	RTANTE	, σ _{R,d} [N	l/mm²]										
seur	de ı adm.		LONG	UEUR I	DE L'AF	PUI [m	m]														
Épaisseur	Angle de torsion adm.	Largeur	70	80	90	100	110	120	130	140	150	175	200	225	250	275	300	350	400	450	500
	40,0	50	-	-	-	7,3	7,6	7,8	8,0	8,2	8,4	8,7	9,0	9,2	9,4	9,6	9,8	10,0	10,2	10,3	10,4
	40,0	60	-	-	-	8,4	8,7	9,0	9,3	9,5	9,8	10,2	10,6	11,0	11,2	11,5	11,7	12,0	12,3	12,5	12,6
	40,0	70	7,7	8,3	8,8	9,3	9,7	10,1	10,5	10,8	11,1	11,7	12,2	12,6	12,9	13,2	13,5				
	40,0	80	8,3	9,0	9,6	10,2	10,7	11,1	11,5	11,9	12,3	13,0	13,6								
	40,0	90	8,8	9,6	10,3	11,0	11,5	12,1	12,5	13,0	13,4										
	40,0	100	9,3	10,2	11,0	11,7	12,3	12,9	13,4	13,9											
	40,0	110	9,7	10,7	11,5	12,3	13,0	13,7													
	37,5	120	10,1	11,1	12,1	12,9	13,7														
	34,6	130	10,5	11,5	12,5	13,4															
	32,1	140	10,8	11,9	13,0	13,9															
10	30,0	150	11,1	12,3	13,4																
10	28,1	160	11,3	12,6	13,7																
	25,7	175	11,7	13,0																	
	22,5	200	12,2	13,6																	
	18,0	250	12,9																		
	15,0	300	13,5																		
	12,9	350	13,9																		
	11,3	400 450																			
	10,0																				
	9,0	500																			0
	8,2	550																		_ [
	7,5	600																			

APPUI																					
[mm]	a [‰]	[mm]	VALEU	JR ASS	IGNÉE	DE LA	CAPACI	TÉ POF	RTANTE	, σ _{R,d} [N	l/mm²]										
Épaisseur	Angle de torsion adm.		LONG	UEUR I	DE L'AF	PUI [m	m]														
Épais	Angle torsio	Largeur	75	80	90	100	110	120	130	140	150	175	200	225	250	275	300	350	400	450	500
	40,0	70	5,0	5,2	5,5	5,8	6,1	6,3	6,5	6,7	6,9	7,3	7,6	7,9	8,1	8,3	8,4	8,7	8,9	9,1	9,3
	40,0	80	5,4	5,6	6,0	6,4	6,7	7,0	7,2	7,4	7,7	8,1	8,5	8,8	9,1	9,3	9,6	9,9	10,2	10,4	10,6
	40,0	90	5,8	6,0	6,5	6,8	7,2	7,5	7,8	8,1	8,4	8,9	9,4	9,8	10,1	10,4	10,6	11,1	11,4	11,7	11,9
	40,0	100	6,1	6,4	6,8	7,3	7,7	8,1	8,4	8,7	9,0	9,6	10,2	10,6	11,0	11,4	11,7	12,2	12,6	12,9	13,2
	40,0	110	6,4	6,7	7,2	7,7	8,1	8,6	8,9	9,3	9,6	10,3	10,9	11,5	11,9	12,3	12,7	13,2	13,7		
	40,0	120	6,6	7,0	7,5	8,1	8,6	9,0	9,4	9,8	10,2	11,0	11,7	12,3	12,8	13,2	13,6				
	40,0	130	6,9	7,2	7,8	8,4	8,9	9,4	9,9	10,3	10,7	11,6	12,4	13,0	13,6						
	40,0	140	7,1	7,4	8,1	8,7	9,3	9,8	10,3	10,8	11,2	12,2	13,0	13,7							
	40,0	150	7,3	7,7	8,4	9,0	9,6	10,2	10,7	11,2	11,7	12,7	13,6								
15	40,0	160	7,5	7,9	8,6	9,3	9,9	10,5	11,1	11,6	12,1	13,2									
15	38,6	175	7,7	8,1	8,9	9,6	10,3	11,0	11,6	12,2	12,7	13,9									
	33,8	200	8,1	8,5	9,4	10,2	10,9	11,7	12,4	13,0	13,6										
	27,0	250	8,6	9,1	10,1	11,0	11,9	12,8	13,6												
	22,5	300	9,0	9,6	10,6	11,7	12,7	13,6													
	19,3	350	9,3	9,9	11,1	12,2	13,2														
	16,9	400	9,6	10,2	11,4	12,6	13,7														
	15,0	450	9,8	10,4	11,7	12,9															
	13,5	500	9,9	10,6	11,9	13,2													4		
	12,3	550	10,1	10,7	12,1	13,4												7 4		_ [
	11,3	600	10,2	10,9	12,3	13,6															
Utilisa	ation da	ns le h	eton c	oulé su	ır nlace	· enro	hage d	ans du	nolyst	vrène											

Utilisation dans le béton coulé sur place : enrobage dans du polystyrène

Appui compact S 65
Appui statique en élastomère destiné à l'isolation d'éléments de construction

Épaisseurs : 20 et 25 mm

APPUI																			
[mm]	α[‰]	[mm]	VALEU	IR ASSIC	SNÉE DI	E LA CA	PACITÉ	PORTAN	ITE, σ _{R,d}	[N/mm	2]								
enr	de adm.	=	LONG	JEUR DI	E L'APPI	JI [mm]													
Épaisseur	Angle de torsion adm.	Largeur	100	110	120	125	130	140	150	175	200	225	250	275	300	350	400	450	500
	40,0	100	5,2	5,5	5,8	5,9	6,0	6,2	6,5	6,9	7,3	7,6	7,9	8,1	8,4	8,7	9,0	9,2	9,4
	40,0	110	5,5	5,8	6,1	6,3	6,4	6,7	6,9	7,4	7,8	8,2	8,5	8,8	9,1	9,5	9,8	10,1	10,3
	40,0	120	5,8	6,1	6,5	6,6	6,8	7,0	7,3	7,9	8,4	8,8	9,1	9,5	9,8	10,2	10,6	11,0	11,2
	40,0	130	6,0	6,4	6,8	6,9	7,1	7,4	7,7	8,3	8,8	9,3	9,7	10,1	10,4	11,0	11,4	11,8	12,1
	40,0	140	6,3	6,7	7,0	7,2	7,4	7,7	8,0	8,7	9,3	9,8	10,3	10,7	11,1	11,7	12,2	12,6	12,9
	40,0	150	6,5	6,9	7,3	7,5	7,7	8,0	8,4	9,1	9,8	10,3	10,8	11,3	11,7	12,3	12,9	13,4	13,8
	40,0	160	6,6	7,1	7,5	7,7	7,9	8,3	8,7	9,5	10,2	10,8	11,3	11,8	12,3	13,0	13,6		
	40,0	175	6,9	7,4	7,9	8,1	8,3	8,7	9,1	10,0	10,8	11,5	12,1	12,6	13,1	13,9			
20	40,0	200	7,3	7,8	8,4	8,6	8,8	9,3	9,8	10,8	11,7	12,5	13,2	13,8			•		
	36,0	250	7,9	8,5	9,1	9,4	9,7	10,3	10,8	12,1	13,2				_				
	30,0	300	8,4	9,1	9,8	10,1	10,4	11,1	11,7	13,1									
	25,7	350	8,7	9,5	10,2	10,6	11,0	11,7	12,3	13,9									
	22,5	400	9,0	9,8	10,6	11,0	11,4	12,2	12,9		'								
	20,0	450	9,2	10,1	11,0	11,4	11,8	12,6	13,4									_	
	18,0	500	9,4	10,3	11,2	11,7	12,1	12,9	13,8										
	16,4	550	9,6	10,5	11,5	11,9	12,4	13,2											
	15,0	600	9,8	10,7	11,7	12,1	12,6	13,5											
Utilisa	tion dan	s le bét	on cou	lé sur pl	ace : er	robage	dans di	u polyst	yrène										
Utilisa	tion dan	is la cla	sse de r	ésistano	ce au fe	u F90 /	F120:	le cas é	chéant,	enroba	ge dans	une pla	que de	protect	tion au 1	feu Cifla	amon		

APPUI [mm]	α[‰]	[mm]	\/A1 FUD	ACCION	ÉE DE LA	CADACIT	τ΄ ΒΟΡΤΑ	NTE, σ _{R,d}	[N] / 21							
		נווווון	VALEUR	ASSIGN	EE DE LA	CAPACII	E PURIA	NIE, O _{R,d}	[IN/mm²]							
	de n adm	'n	LONGUI	EUR DE L	'APPUI [n	nm]										
Épaisseur	Angle de torsion adm.	Largeur	125	130	140	150	175	200	225	250	275	300	350	400	450	500
	40,0	125	5,2	5,3	5,6	5,8	6,2	6,6	7,0	7,3	7,6	7,8	8,2	8,5	8,8	9,0
	40,0	130	5,3	5,5	5,7	5,9	6,4	6,8	7,2	7,5	7,8	8,0	8,5	8,8	9,1	9,3
	40,0	140	5,6	5,7	6,0	6,2	6,7	7,2	7,6	7,9	8,3	8,5	9,0	9,4	9,7	10,0
	40,0	150	5,8	5,9	6,2	6,5	7,0	7,5	8,0	8,4	8,7	9,0	9,5	10,0	10,3	10,6
	40,0	160	6,0	6,1	6,4	6,7	7,3	7,9	8,3	8,8	9,1	9,5	10,0	10,5	10,9	11,3
	40,0	175	6,2	6,4	6,7	7,0	7,7	8,3	8,8	9,3	9,7	10,1	10,8	11,3	11,8	12,2
	40,0	200	6,6	6,8	7,2	7,5	8,3	9,0	9,6	10,2	10,7	11,1	11,9	12,6	13,1	13,6
25	40,0	250	7,3	7,5	7,9	8,4	9,3	10,2	11,0	11,7	12,3	12,9	13,9			
	37,5	300	7,8	8,0	8,5	9,0	10,1	11,1	12,1	12,9	13,7					
	32,1	350	8,2	8,5	9,0	9,5	10,8	11,9	13,0	13,9						
	28,1	400	8,5	8,8	9,4	10,0	11,3	12,6	13,7							
	25,0	450	8,8	9,1	9,7	10,3	11,8	13,1							_	
	22,5	500	9,0	9,3	10,0	10,6	12,2	13,6							1	
	20,5	550	9,2	9,5	10,2	10,9	12,5								F ,	
	18,8	600	9,4	9,7	10,4	11,1	12,8									

Appui compact S 65
Appui statique en élastomère destiné à l'isolation d'éléments de construction

Épaisseur : 30 mm

APPUI													
[mm]	a [‰]	[mm]	VALEUR A	ASSIGNÉE [DE LA CAPA	CITÉ PORT	ANTE, σ _{R,d} [N/mm ²]					
seur	de n adm.	ur	LONGUEL	JR DE L'API	PUI [mm]								
Épaisseur	Angle de torsion adm.	Largeur	150	175	200	225	250	275	300	350	400	450	500
	40,0	150	5,2	5,7	6,1	6,5	6,8	7,0	7,3	7,7	8,1	8,4	8,6
	40,0	160	5,4	5,9	6,4	6,7	7,1	7,4	7,7	8,1	8,5	8,8	9,1
	40,0	175	5,7	6,2	6,7	7,2	7,5	7,9	8,2	8,7	9,2	9,5	9,8
	40,0	200	6,1	6,7	7,3	7,8	8,2	8,6	9,0	9,6	10,2	10,6	11,0
	40,0	250	6,8	7,5	8,2	8,9	9,4	10,0	10,4	11,3	12,0	12,6	13,2
20	40,0	300	7,3	8,2	9,0	9,8	10,4	11,1	11,7	12,7	13,6		
30	38,6	350	7,7	8,7	9,6	10,5	11,3	12,0	12,7	13,9		-	
	33,8	400	8,1	9,2	10,2	11,1	12,0	12,8	13,6				
	30,0	450	8,4	9,5	10,6	11,7	12,6	13,6					
	27,0	500	8,6	9,8	11,0	12,1	13,2						
	24,5	550	8,8	10,1	11,4	12,5	13,7					4,	
	22,5	600	9,0	10,4	11,7	12,9		-					
Hilication	dans le h	átan gaulá	cur place :	enrohage	dane du no	lyctyràna							

Utilisation dans le béton coulé sur place : enrobage dans du polystyrène

APPLIIS EN BANDE

Appui compact S 65

Appui statique en élastomère destiné à l'isolation d'éléments de construction

Épaisseurs : 10, 15, 20, 25 et 30mm

APPUIS EN BANDE										
	APPUI C	OMPACT S	65							
LARGEUR DE L'APPUI	ÉPAISSEU	ÉPAISSEURS DE L'APPUI								
a ₁	t = 10	0 mm	t = 1	5 mm	t = 20	O mm	t = 2	5 mm	t=30	0 mm
	$F_{R,d}$	α adm.	$F_{R,d}$	α adm.	$F_{R,d}$	α adm.	$F_{R,d}$	α adm.	$F_{R,d}$	α adm.
[mm]	[kN/m]	[‰]	[kN/m]	[‰]	[kN/m]	[‰]	[kN/m]	[‰]	[kN/m]	[‰]
50	583	40	_	_	_	_	_	-	-	-
60	840	40	_	_	_	_	_	-	-	-
70	980	40	_	_	_	_	_	-	-	-
80	1120	40	1006	40	-	_	_	-	-	-
90	1260	40	1260	40	-	-	_	-	-	-
100	1400	40	1400	40	1167	40	_	-	-	-
110	1540	40	1540	40	1433	40	_	-	-	-
120	1680	37,5	1680	40	1680	40	_	_	-	-
130	1820	34,6	1820	40	1820	40	1587	40	_	_

39,7

37,5

35,5

33,8

32,1

30,7

29,3

28,1

27,0

39,1

37,5

36,0

Utilisation dans le béton coulé sur place : enrobage dans du polystyrène

32,1

30,0

28,1

26,5

25,0

23,7

22,5

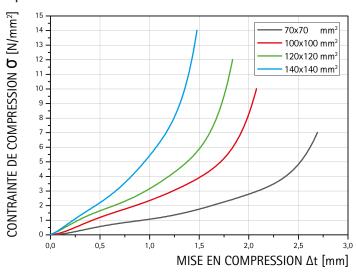
21,4

20,5

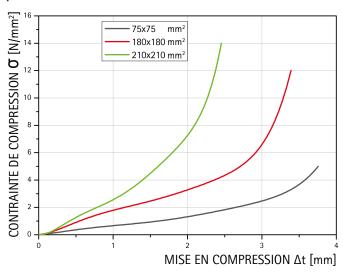
19,6

18,8

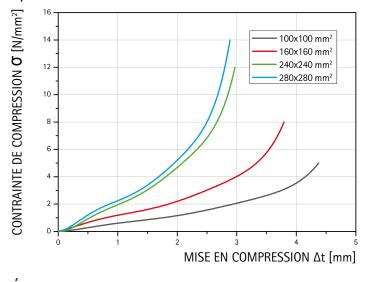
18,0

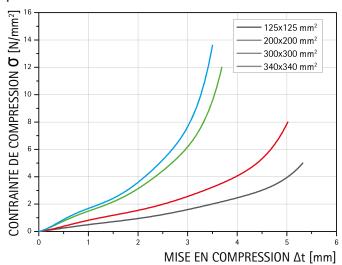


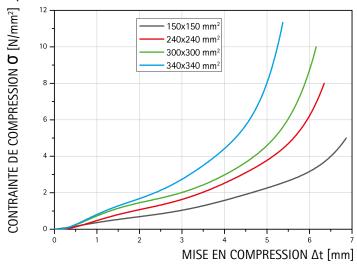
Appui statique en élastomère destiné à l'isolation d'éléments de construction


Courbes caractéristiques d'élasticité

Les diagrammes suivants montrent le comportement à la déformation en compression pour différents formats en cas d'utilisation entre des surfaces en béton (éléments préfabriqués).


Épaisseur 10 mm


Épaisseur 15 mm


Épaisseur 20 mm

Épaisseur 25 mm

Épaisseur 30 mm

Appui statique en élastomère destiné à l'isolation d'éléments de construction

Exemple de dimensionnement

Situation initiale : $F_{E,k}$ = 590 kN correspondant à $F_{E,d}$ = 1,4 x $F_{E,k}$ = 826 kN*, torsion de l'appui α = 19 ‰, déformation horizontale u = 6,2 mm

Dimensions choisies : $a_1 = 160 \text{ mm}, b_1 = 370 \text{ mm}, t = 15 \text{ mm}$

Facteur de forme : $S = \frac{160 \text{ mm x } 370 \text{ mm}}{2 \text{ x } 15 \text{ mm x } (160 \text{ mm} + 370 \text{ mm})} = 3.7$

Capacité portante : $\sigma_{Rd} = 4,03 \times 3,7^{1,16} = 18,4 \text{ N/mm}^2 > 14 \text{ N/mm}^2$

 \rightarrow $\sigma_{R,d} = 14 \text{ N/mm}^2$

 $F_{R,d} = \sigma_{R,d} \times A_E = 14,0 \text{ N/mm}^2 \times 160 \text{ mm} \times 370 \text{ mm} = 828,8 \text{ kN}$

 $F_{R,d} \ge F_{E,d} \longrightarrow La$ capacité portante de l'appui est suffisante

Torsion de l'appui résultant de la déformation

de l'élément de construction : $\alpha = 19 \%$

Torsion supplémentaire résultant de

l'inclinaison oblique : 10 %

Torsion supplémentaire résultant

d'une irrégularité : 625 (mm*%) /a (mm) = 625/160 % = 3,9 %

Torsion totale à absorber : $\alpha = 19\%0 + 10\%0 + 3.9\%0 = 32.9\%0$

 α max. = 450 % x t/a = 450 % x 15 mm/160 mm = 42,2 % > 40 %

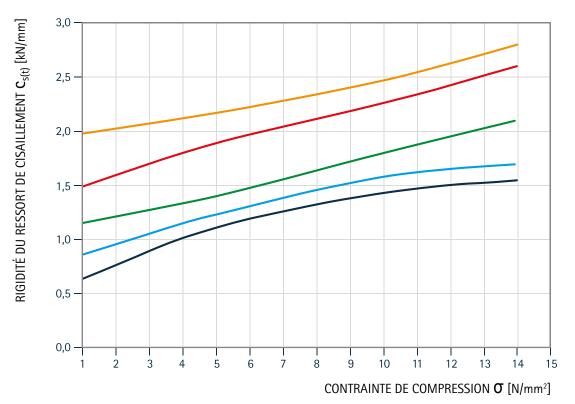
 $\rightarrow \alpha$ max. = 40 %0

 α max. $\geq \alpha \longrightarrow L'$ angle de torsion de l'appui est suffisant

Déformation horizontale des éléments

de construction : u = 6.2 mm

U max. = $0.6 \times (t-2) = 7.8 \text{ mm}$


u max. ≥ u → La déformabilité en cisaillement de l'appui est suffisante

^{*} Remarque à propos du coefficient de sécurité partiel : Le coefficient de sécurité partiel d'une charge appliquée dépend de sa nature. Avec les charges permanentes, il s'élève par ex. à 1,35 et, avec les charges variables, à 1,5. Comme les appuis de construction dans le bâtiment doivent uniquement être employés au-dessous de charges principalement permanentes, il est possible d'appliquer un facteur approximatif de 1,4 pour le rapport entre la charge caractéristique totale et la charge assignée nominale totale.

Appui statique en élastomère destiné à l'isolation d'éléments de construction

Rigidité au cisaillement

LÉGENDE

DIAGRAMME

En cas de déformation en cisaillement horizontale due à des forces horizontales non récurrentes, aucune preuve statique n'est requise, car un faible glissement unique n'engendre aucune modification nuisible de l'appui. Si la débattement de cisaillement doit être une « pure » déformation en cisaillement, une contrainte de compression verticale de l'appui σ_{Ed} de minimum 1 N/ mm² est requise.

Le contenu de cette publication est l'aboutissement d'un important travail de recherche et d'expériences acquises en matière d'application. Toutes les informations et remarques sont fournies sur la base de nos connaissances actuelles ; elles ne constituent aucune promesse de qualité et ne libèrent pas l'utilisateur de procéder lui-même à un contrôle en ce qui concerne les droits de propriété de tiers. Nous déclinons toute responsabilité pour les dommages, indépendamment de leur nature et du motif juridique, résultant des conseils donnés dans cette publication. Sous réserve de modifications techniques dans le cadre du perfectionnement du produit.